Targeted Metabolomics

Olga Ilkayeva, PhD

Director, Metabolomics Laboratory Duke University Medical Center Sarah W. Stedman Nutrition and Metabolism Center

Targeted Approach:

- Quantitative analysis
- Measure molarities of chemically cognate panels of small metabolites in diverse biological matrices (in our case - with emphasis on obesity, diabetes, and cardiovascular disease)
- µM determined via stable-isotope dilution

Experimental Design

- Well defined groups (control vs. mutant/treated)
- Consistent conditions (media, serum, temperature, diet)
- Consistent collection of samples
- Proper storage
- Quality controls
- Proper number of replicates (technical and biological)

Established Targeted Modules	
 Flow Injection MS/MS Amino Acids (15 analytes) Acylcarnitines (66 analytes) Free and Total Carnitine Acyl CoAs (57 analytes) Ceramides (21 analytes) Creatinine LC-MS/MS Malonyl CoA Tryptophan and Kynurenic Acid GC MS Organic Acids (20 analytes) Fatty Acids (free-9 and total-9 analytes) 	

Active Development

- LC-MS/MS for Acylcarnitines
- Sphingomyelins (30 analytes)
- Nucleotides

Biological Matrices

- Plasma/serum
- Blood spots
 Urine
- Liver
- Muscle
- Adipose
- Kidney
- Brain
- Heart

- Cell culture
- Cecal water
- Cerebral spinal fluid
 - Lung lavage fluid
 - Fly larva
 - Worms

Amino Acids Quality Control															
QC 1 (micromolar)															
	Gly	Ala	Ser	Pro	Val	Leu/lle	Met	His	Phe	Tyr	Asp	Glu	Orn	Cit	Arg
Nominal (Aug-05)	402	355	146	107	272	281	38	55	93	57	29	262	93	71	242
Mean (Sep-05 to Apr-07)	398	373	139	112	265	279	39	54	93	59	30	273	94	72	256
St Dev	34	18	15		20	19						26			22
% CV															
QC 2 (micromolar)															
	Gly	Ala	Ser	Pro	Val	Leu/lle	Met	His	Phe	Tyr	Asp	Glu	Orn	Cit	Arg
Nominal (Aug-05)	711	674	205	170	334	351	103	119	158	122	93	329	161	135	312
Mean (Sep-05 to Apr-07)	723	693	203	175	334	344	103	119	159	124	94	337	161	137	321
St Dev	50	23	20		29	20						36	15	11	28
% CV															

Acyl	car	niti	nes	s Q	ua	lity	Co	ontr	ol	
				Q((micro	C 1 molar)					
	C2	C3	C5	C6	C8	C10	C12	C14	C16	C18
Nominal (Aug-05)	8.76	1.88	0.40	0.34	0.33	0.35	0.34	0.38	0.42	0.45
Mean (Sep-05 to Apr-07)	8.39	1.85	0.41	0.37	0.20	0.37	0.33	0.35	0.40	0.44
St Dev	0.56	0.21	0.04	0.03	0.02	0.04	0.02	0.02	0.02	0.03
% CV										
				Q((micro	C 2 molar)					
Nominal (Aug-05)	40.65	5.15	3.54	3.36	3.27	3.27	3.44	3.49	3.58	3.64
Mean (Sep-05 to Apr-07)	39.79	4.89	3.49	3.36	1.89	3.30	3.32	3.43	3.51	3.57
St Dov	1.92	0.53	0.22	0.29	0.10	0.19	0.22	0.14	0.13	0.14
SUDEV										

Utility of targeted panels Acyl carnitines - FA oxidation, BCAA catabolism Amino Acid Panel - Amino acids and Urea cycle Acyl CoA - FA oxidation, Lipid synthesis Ceramides - Cell structure, signaling and function Organic acids - FA oxidation, TCA cycle, amino acid catabolism Fatty Acid - Lipid synthesis, signaling

Branched-chain amino acids alter neurobehavioral function in rats

• BCAA and AAA are strongly associated with obesity and insulin resistance in humans.

• BCAA and AAA are transported from the blood into the CNS by the large neutral amino acid transporter 1(LAT1). Their uptake is competitive.

• Tyr is the precursor of NE and DA. Trp is the precursor of serotonin and Kynurenic Acid.

Does long-term supplementation with BCAA lead to behavioral changes?

Anna Coppola, Brett R. Wenner, Olga Ilkayeva, Robert D. Stevens, Mauro Maggioni, Theodore A. Slotkin, Edward D. Levin and Christopher B. Newaard

Am J Physiol Endocrinol Metab 304:E405-E413, 2013.

21

